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On cusped interfaces
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(Received 25 October 1996 and in revised form 28 November 1997)

An asymptotic analysis of two-dimensional free-surface cusps associated with flows
at low Reynolds numbers is presented on the basis of a model which, in agreement
with direct experimental observations, considers this phenomenon as a particular
case of an interface formation–disappearance process. The model was derived from
first principles and earlier applied to another similar process: the moving contact-line
problem. As is shown, the capillary force acting on a cusp from the free surface, which
in the classical approach can be balanced by viscous stresses only if the associated
rate of dissipation of energy is infinite, in the present theory is always balanced by the
force from the surface-tension-relaxation ‘tail’, which stretches from the cusp towards
the interior of the fluid. The flow field near the cusp is shown to be regular, and the
surface-tension gradient in the vicinity of the cusp, caused and maintained by the
external flow, induces and is balanced by the shear stress. Existing approaches to the
free-surface cusp description and some relevant experimental aspects of the problem
are discussed.

1. Introduction
Experiments originally reported by Joseph et al. (1991) and since then repeated by

many authors show that at finite values of the capillary number, different for different
fluids, convergent flow near a free surface produces a cusped two-dimensional interface
so that ‘no rounding can be detected, at least on a visible lengthscale’ (Joseph et al.
1991). Another essential point is that as soon as the cusp appears, the stagnation
line, which exists on the rounded free surface at relatively low capillary numbers, is
no longer present so that ‘if powder is sprinkled on the free surface, this powder is
immediately swept through the cusp into the interior of the fluid’ thus suggesting that
‘fluid particles on the free surface are similarly advected through the cusp into the
interior’ (Jeong & Moffatt 1992).

The principal theoretical results in modelling of free-surface interfaces with line
singularities of curvature are as follows. Richardson (1968) presented an analysis
of deformation of two-dimensional bubbles in Stokes flow and proved that in the
framework of the classical fluid-mechanical approach the only possible line singularity
of the interface between a Newtonian viscous liquid and an inviscid gas is a genuine
cusp. Then to balance the capillary force 2σ per unit length of the cusp acting on the
liquid, the flow field has to be singular at the cusp so that for a cusp that opens on the
negative x-axis (figure 1) the leading contribution to the stream function, expressed
in polar coordinates (r, θ), is given by

ψ =
σ

2πµ
r log r sin θ, (1.1)
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Figure 1. A definition sketch for a flow near a cusp.

where σ and µ are the surface tension and viscosity, respectively, and the deviation
of the free interface from a flat surface in the leading term is neglected. As should be
expected, since the capillary force is a concentrated force (i.e. produces a finite total
force, σ per unit length, while acting on a line), it can be balanced by a viscous stress,
which is a distributed force (and, if integrable, gives a finite total force acting on an
area) only if the viscous stress density has a non-integrable singularity at the cusp,
and the associated rate of dissipation of energy is infinite. Obviously, from a physical
point of view such a singularity cannot be accepted.

Joseph et al. (1991) presented an asymptotic analysis of the flow near the cusp tip
for the case of zero surface tension (where no concentrated capillary force acts on the
liquid) and found that at leading order the free surface shape is given by

y = ±c|x|3/2 (x < 0), (1.2)

where c is a constant determined by the external flow. This asymptotics implies infinite
curvature of the free surface at the origin. Inclusion of a finite surface tension in
the analysis changes the power in (1.2), so that 3

2
becomes the limit as the capillary

number Ca tends to infinity but, however, does not make the asymptotics applicable
up to the cusp, where in this case (i) the concentrated capillary force is present thus
invoking all associated difficulties, and (ii) since the curvature of the free surface goes
to infinity as the cusp is approached, the model describing the interfaces as geometrical
surfaces of zero thickness with a constant surface tension becomes inapplicable.

Jeong & Moffatt (1992) presented an exact analytical solution for a symmetrical
creeping flow near a free surface which, in the corresponding experiment, leads to the
cusp formation. The solution confirms (1.2) as the true asymptotics at high capillary
numbers, Ca, not close to the tip and determines the value of c. The free surface
is described as smooth at finite capillary numbers with an exponentially decreasing
radius of curvature on the line of symmetry on the free surface as Ca increases so that,
strictly speaking, the cusp appears when Ca = ∞. However, for typical values of the
flow parameters corresponding to cusp formation in experiments the exact solution
predicts the radius of curvature at the tip to be comparable with the molecular size,
thus clearly indicating that the solution, being self-consistent, falls outside the limits
of applicability of the model, where interfaces are treated as geometrical surfaces of
zero thickness thus implying the radius of curvature to be large compared with the
interfacial layer thickness. Thus, if the problem is considered on a macroscopic (i.e.
hydrodynamic) length scale, then a genuine cusp has to be introduced at a finite
capillary number, and one has to balance the capillary force by the viscous stress and
will inevitably arrive at (1.1). Besides this, in the exact solution the line of symmetry
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on the free surface at finite capillary numbers is always a stagnation line so that
the interface always consists of the same material particles. This is in conflict with
the experimental observations cited above, which suggest that the cusp formation
corresponds to a qualitative change in the flow kinematics.

In other words, at finite capillary numbers in the conventional model there is either
no cusp or a cusp together with the singular flow field associated with an infinite rate
of dissipation of energy.

The above-mentioned difficulties were, of course, well-understood and pointed out
by the authors of the cited works. Thus, the results obtained highlight, from different
points of view, the fact that the Navier–Stokes equations together with the classical
boundary conditions on the free surface provide an adequate description of the flow
and evolution of the free surface until the radius of curvature becomes so small that
the solution approaches the limit of applicability of the model. Then (in a real fluid)
some additional physical mechanisms, not taken into account in the classical model,
come into action, making possible the existence of a genuine cusp (on a macroscopic
length scale) and (also macroscopic) advection of fluid particles initially belonging to
the free surface through the cusp into the interior.

The necessity of incorporating ‘extra’ physical mechanisms follows also from the
fact that for different fluids the transition to a cuspidal regime corresponds to
considerably different values of the only similarity parameter associated with the
classical model (the capillary number) so that one should expect the implicit presence
of other similarity parameters and hence ‘extra’ physical mechanisms.

It should be emphasized that the inapplicability of the Navier–Stokes equations
together with the classical boundary conditions on the free surface to the description
of the flows with steady two-dimensional cusps does not at all mean the breakdown of
the continuum approximation itself: to describe the macroscopically observed cusp on
the macroscopic (hydrodynamic) length scale one should include in the corresponding
mathematical model the macroscopic ‘outcome’ of those physical mechanisms which
become important when a rounded free surface transforms into a cusp. (Since the
geometrical indication of the cusp formation sometimes brings speculations about
‘apparent cusps’ or ‘almost cusps’, the kinematic definition associated with the dis-
appearance of the stagnation line on the free surface seems more relevant from a
physical point of view, implying that it corresponds to a fully developed cusp.)

In other words, we may say that, remaining on the macroscopic level of description,
one should expect that in the end intermolecular forces, which are often assumed
to be responsible for the cusp formation, or other (micro- or macroscopic) physical
mechanisms will manifest themselves acroscopically (as additional macroscopic forces,
changes in the transport coefficients, etc.) to allow for the existence of a macroscopic
cusp. More specifically, one should expect the appearance of a concentrated non-
hydrodynamic force borne and maintained by the external flow, which will balance
the capillary force acting on the cusp, thus allowing the hydrodynamic flow field to
be regular (or at least less singular) near it.

The key idea of the present study is very simple. Since experiments show that on
a macroscopic length scale there is advection of liquid particles through the cusp
into the interior, we may consider cusping as a particular case of a more general
physical phenomenon, namely the process of interface formation or disappearance.
Other particular examples of such a process are the moving-contact-line problem (see
Dussan V. 1979 and Shikhmurzaev 1997, §9 for reviews), the sliding plate problem
(Batchelor 1967, p. 224; Koplik & Banavar 1995), the oscillating jet phenomenon
(Bohr 1909) to mention a few. Thus, we may apply a model, which was derived
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Figure 2. Schematic illustration of the physical picture of the flow near a cusp. On the macroscopic
(hydrodynamic) length scale the liquid–gas interfacial layer (1) can be modelled as a geometrical
surface of zero thickness, the transition zone (2) is seen a cusp line, and the surface-tension-relaxation
‘tail’ (3) becomes a gradually disappearing ‘internal interface’.

from first principles to incorporate this process and originally used for the analysis of
the moving-contact-line problem (Shikhmurzaev 1993a, b, 1994, 1996, 1997), without
making any ad hoc changes adjusting the model to the cusp problem.

Then the physical picture of flow with a free-surface cusp is as follows. Fluid par-
ticles which initially belong to the free surface and, being under the non-symmetrical
influence of intermolecular forces from the bulk phases, possess some surface prop-
erties (such as and first of all, the surface tension) pass through the cusp into the
bulk (figure 2) so that their surface properties have to gradually disappear, and they
eventually become ordinary ‘bulk particles’. Hence there must be a relaxation ‘tail’
which stretches from the cusp towards the interior and where the surface tension and
other ‘surface’ parameters gradually vanish. The surface tension changes continuously
across the cusp, and hence the capillary force acting on the cusp from the free surface
is always balanced by that from the surface-tension-relaxation ‘tail’. The external
flow, which forces the particles on the free surface to pass through the cusp, thus
causes the surface-tension gradient in the vicinity of it, and this gradient has a reverse
influence upon the flow and induces shear stress (an example of the flow-induced
Marangoni effect). Since in the present model the viscous stresses have to balance not
the capillary force, which is already compensated by the force from the relaxation
‘tail’, but only the surface-tension gradient near the cusp, the flow field appears to be
regular at the cusp.

The goal of the paper is to consider the fundamental difficulty brought by a cusp
and present a local asymptotic analysis of the flow near it, which can be incorporated
as an element in different global solutions. In §2, the mathematical formulation of
the problem is given, and §3 deals with a local analysis of the flow near a genuine
cusp. In §4, the main points of the model and some relevant questions are discussed,
and a possible way of experimental verification (or otherwise) of the present work is
proposed.

2. Problem formulation
Consider a symmetrical cusp formed by an interface between an incompressible

Newtonian liquid and an inviscid gas (i.e. physically a vacuum) which opens on the
negative x-axis of the Cartesian coordinate frame (x, y) with the origin coincident
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with the cusp (figure 1). Owing to the symmetry of the problem we may consider
the region y > 0 and in what follows will assume that the flow is steady and the
associated Reynolds number is small so that the inertial terms may be neglected. In
the bulk in the absence of mass forces one has

∇ · u = 0, ∇ ·P = 0, (2.1)

where u is the fluid velocity and P = −pI + µ[∇u+ (∇u)T] is the stress tensor (p and
µ are the pressure and viscosity, respectively; I is the metric tensor).

According to experiments (Jeong & Moffatt 1992), liquid particles on the free
surface are swept through the cusp, and one has to expect that they form a relaxation
‘tail’ stretching towards the interior of the liquid, where their surface properties
gradually disappear (figure 2). Since in the symmetrical case the tangential force on
the plane of symmetry is absent, one may use the following equations both on the
free surface and the semiaxis x > 0 (Shikhmurzaev 1993a, 1994):

u · n = 0, (2.2)

(I − nn) ·P · n− ∇ps = 0, (2.3)

ps = γ(ρs − ρs0), (2.4)

∇ · (ρsvs) = −ρ
s − ρse
τ

, (2.5)

(1 + 4αβ)∇ps = 4β(u− vs) · (I − nn), (2.6)

and the change in the environment for a fluid particle as it comes from the free
surface to the bulk is given by

ρse =

{
ρs1e , x < 0
ρs0 , x > 0.

(2.7)

Here n is a unit inward normal to the interface; ps and ρs are the ‘surface’ pressure,
defined as the negative surface tension, and the surface density, respectively; vs is the
velocity associated with the mass flux along the interface (vs · n = 0), and α, β, γ, τ, ρs0
and ρs1e (< ρs0) are phenomenological constants.

The free-surface shape is determined by

n ·P · n+ pg + psκ = 0, (2.8)

where pg is the (constant) pressure in the gas, and κ is the curvature of the free
surface.

Some comments on the boundary conditions seem relevant. Equations (2.2) and (2.8)
are the usual kinematic and normal-stress boundary conditions, and (2.3) generalizes
the usual zero tangential stress condition to account for the surface pressure gradient†
– this equation is used as the basis for the studies of the Marangoni flows. To
incorporate the interface formation–disappearance process in the frame of the general
fluid-mechanical approach, one has to introduce the surface equation of state and
some equations describing the process of relaxation of the surface parameters, which
characterize the current state of the interface. The simplest set of the corresponding
equations is given by (2.4)–(2.6), where we use a linear equation of state (2.4), which
relates the surface pressure to the surface density, and a linear term in (2.5) describing

† Note a misprint in the sign of the surface pressure gradient in equations (6) in Shikhmurzaev
(1996). The subsequent formulae in that paper are correct.
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relaxation of the surface density to its equilibrium value ρse. The constant ρs0 is the
surface density corresponding to zero surface pressure; ρs1e in (2.7) is the equilibrium
surface density for the gas–liquid interface (ρs1e < ρs0 so that σ = −ps(ρs1e) > 0 is the
equilibrium surface tension), and τ is the relaxation time. Coefficients α, β describe
the influence of the surface and bulk forces on the velocity difference across the
interface (these coefficients appear in a combination here, whereas in the case of a
liquid–solid interface, where the corresponding set of equations are slightly different,
the coefficients appear separately). Details of the model can be found elsewhere
(Shikhmurzaev 1993a, 1994). Some aspects are also discussed in §4 of the present
paper.

Obviously, for most hydrodynamic flows, where the characteristic time scale is
much larger than τ and the length scale is large compared with Uτ, where U is
the characteristic value of the fluid velocity, equations (2.2)–(2.6), (2.8) reduce to the
classical boundary conditions on the free surface.

The distributions of the surface parameters along the free surface (Σ) and the
relaxation ‘tail’ (S) are linked by the surface mass and momentum balance conditions
at the cusp (r = r0):

(ρsvs)|r→r0 , r∈Σ = (ρsvs)|r→r0 , r∈S , ps|r→r0 , r∈Σ = ps|r→r0 , r∈S . (2.9)

Taking account of (2.4), conditions (2.9) require simply continuity of the surface
parameters at the cusp point.

To complete the problem formulation one has to prescribe the values of ρs (= ρs1e)
and vs (= u) far away from the cusp and specify the boundary conditions for the
outer flow which give rise to the cusp formation.

3. Analysis
We shall analyse the asymptotics of the solution near the origin, where the classical

hydrodynamic approach faces the difficulty of principle briefly described in §1. If U
is the characteristic value of the flow velocity, then one may use the following scales
for lengths, velocities, the pressure difference p− pg (which will be used instead of p),
surface pressures and densities:

Uτ, U,
µ

τ
, σ, ρs0

to make the equations and boundary conditions non-dimensional. Using the notation
θ = π − g(r) for the position of the free surface located above the cusp in the plane
polar coordinates (r, θ) and eliminating ps with the help of (2.4), one can rewrite (2.2),
(2.3), (2.5)–(2.6) as

u · n = 0, (3.1)

Ca(I − nn) ·P · n = λ∇ρs, (3.2)

∇ · (ρsvs) = −(ρs − ρse(θ)), (3.3)

∇ρs = 4V 2(u− vs) · (I − nn), (3.4)

where

Ca =
µU

σ
, λ =

1

1− ρs1e
, V 2 =

τβU2

(1 + 4αβ)σλ
, ρse(θ) =

{
ρs1e, θ = π − g(r)
1, θ = 0



On cusped interfaces 319

and (2.8) takes the form

n ·P · n =
λ(ρs − 1)

Ca

[
rg′′ + 2g′ + r2g′3

(1 + r2g′2)3/2

]
. (3.5)

We will look for a solution for the flow field near the cusp as a perturbation of
uniform flow in the positive x-direction and the free surface as a perturbation of the
negative x-semiaxis. If ρsc and vsc denote respectively the values of the surface density
and the x-component of the surface velocity at the origin, then one can immediately
find from (3.3) and (3.4) that the leading terms of an asymptotic expansion of ρs and vs,
which is a projection of vs on the tangent to the interface directed along the flow (hence
vs is positive both on the free surface and in the bulk), about the origin are given by

ρs = ρsc − ar + . . .
vs = vsc + b1r + . . .

}
(θ = π − g(r)), (3.6)

and
ρs = ρsc + ar + . . .
vs = vsc + b2r + . . .

}
(θ = 0), (3.7)

where

vsc = 1− a

4V 2
, ρsc =

avsc − ρs1e
b1 − 1

, b2 =
1

ρsc
(1− ρsc − avsc),

and a and b1 are determined externally. It is noteworthy that the surface density
gradient (and hence, due to (2.4), the surface pressure gradient) is continuous at the
cusp since, as is clear from (3.4), the second terms on the right-hand sides of (3.6) and
(3.7) depend on the leading terms of the expansions of u and vs, which are continuous
at the origin.

We will introduce a stream function ψ by

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r

and look for the leading terms of an asymptotic series

ψ = ψ1(r, θ) +
∑
q

ψq(r, θ) ≡ r sin θ +
∑
q

rqFq(θ), (3.8)

where ψq are solutions of the biharmonic equation.
Substituting (3.8) in (3.1), (3.2), (3.5) and using (3.6) and (3.7), we get after straight-

forward calculations that the second term in (3.8) is associated with a shear flow

ψ2(r, θ) =
λa

2Ca
r2 sin2 θ, (3.9)

whilst the third one, which corresponds to

q > 2, (3.10)

is a solution of an eigenvalue problem, provided that

q < 3, (3.11)

and hence the contribution from the third terms on the right-hand sides of (3.6) and
(3.7) to the right-hand side of (3.2) does not appear when the terms of order rq−2 are
considered.

In other words, conditions (3.10), (3.11) correspond to the situation where the
flow-induced Marangoni effect, which is a consequence of the physical mechanism



320 Y. D. Shikhmurzaev

put at the basis of the explanation of the free-surface cusps existence, has already
come into play (q > 2), and at the same time only the leading terms associated with
this effect are taken into account (q < 3).

The second term of (3.8) provided by (3.9) does not give us the leading term of the
free-surface shape expansion about the origin. The cusp ‘opens’ only when we arrive
at the third term of (3.8).

The function Fq satisfies(
d2

dθ2
+ q2

)(
d2

dθ2
+ (q − 2)2

)
Fq = 0, (3.12)

and, using that from (3.1) on the free surface

g(r) = −rq−1Fq(π),

one can rewrite (3.1), (3.2) on θ = 0 and (3.2), (3.5) on the free surface as

Fq(0) = 0, (3.13)

F ′′q (0) = 0, (3.14)

F ′′q (π)− q(q − 2)Fq(π) = 0, (3.15)

F ′′′q (π) + (3q2 − 6q + 4)F ′q(π) +
λ

Ca
[(1− ρsc)q + 2a](q − 1)(q − 2)Fq(π) = 0. (3.16)

Equation (3.12) together with (3.13)–(3.16) provide the eigenvalue problem mentioned
above.

The solution of (3.12), which satisfies (3.13) and (3.14), has the form

ψq(r, θ) = rq[C1 sin(qθ) + C2 sin((q − 2)θ)], (3.17)

where C1 and C2 are non-zero if q satisfies an equation

tan(qπ) = − 2qCa

λ[(1− ρsc)q + 2a]
, (3.18)

which can be obtained after substituting (3.17) in (3.15), (3.16) and making the determi-
nant of the corresponding set of linear algebraical equations equal to zero. Conditions
(3.10), (3.11) provide the selection of a unique root of (3.18). In particular, if a = b1 = 0,
then (3.18) reduces to the corresponding equation of classical hydrodynamics†,
tan(qπ) = −2Ca. In this equation, Ca is the only similarity parameter while (3.18)
includes other dimensionless parameters characterizing the fluid and outer flow.

In Cartesian coordinates the free surface is described by

y = ∓|x|q(C1 + C2) sin(qπ) (x < 0).

Constants C1 and C2 are related through

C1q + C2(q − 2) = 0

imposed by (3.15) so that there is only one degree of freedom which has to be
determined from the external conditions.

Condition (3.10) implies that the free-surface curvature tends to zero as the cusp is

† Note a misprint in the sign of curvature in Joseph et al. (1991) which led to the corresponding
misprint in their equation (11). The same misprint in the same equation occurred earlier in Benney
& Timson (1980) – see Ngan & Dussan V. (1984) for details.
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approached, and (3.8), (3.9), (3.17) show that the flow field near the cusp is regular.
At the cusp point the angle of the interface has a jump of 2π, but the concentrated
capillary force, which appears because of this jump, is balanced by that from the
surface-tension relaxation ‘tail’ stretching from the cusp towards the interior of the
liquid and does not require any non-integrable (or even integrable) singularities in the
flow field. Equation (3.6) together with (2.4) show that, in general, the surface tension
begins to disappear before the particles belonging to the interface reach the cusp, and
(3.6), (3.7) give that both the surface tension and its gradient are continuous across
the cusp point.

4. Discussion
In this section, we will discuss the physical background of the present work and

the process of cusping from the point of view of existing mathematical models of this
phenomenon.

4.1. Relaxation time

The key idea of the present work is to use experimental evidence which indicates that
cusping is a particular case of the interface formation–disappearance process. This
implies that the fluid particles which initially belonged to the free surface, being swept
through the cusp into the interior of the fluid, will form the surface-tension-relaxation
‘tail’, which will balance the concentrated force acting on the cusp due to the surface
tension of the free surface. This also suggests that a mathematical model derived
earlier to incorporate the interface formation–disappearance process and originally
applied to another similar problem will be applicable without any ad hoc assumptions.
To be qualitatively correct, this idea requires only a non-zero time of surface tension
relaxation. This is, of course, true. However, application of the present model brings
more restrictive conditions.

The model is macroscopic in the sense that it considers flows on a characteristic
length scale large compared with the thickness of the interfacial layer so that one may
deal with interfacial surfaces instead of interfacial layers, the surface tension instead
of a three-dimensional stress tensor in the interfacial layer, a surface density instead
of a distribution of the actual density inside this layer, etc. This implies that the
interfacial layer thickness h is small compared both (i) with the radius of curvature
of the free surface and (ii) with the length of the surface-tension-relaxation ‘tail’.
Condition (i) is satisfied since according to results of §3 the curvature of the free
surface tends to zero as the cusp is approached. Condition (ii) implies that

h � Uτ. (4.1)

The limitation imposed by this inequality on the value of τ is not very restrictive.
Indeed, even for low velocities corresponding to the onset of cusping, experiments
(Joseph et al. 1991) show that the critical velocity Uc varies from 3.6 cm s−1 (silicone
oil – 5000 cS) to 21.06 cm s−1 (castor oil). Thus, for h ∼ 10−7–10−6 cm one has
τ � 5× 10−9–3× 10−7 s. As U goes up from Uc, inequality (4.1) imposes less and less
restrictive limitations on τ.

Although the required relaxation time is quite macroscopic, its experimental de-
termination is a formidable problem. The difficulties come from the requirement
to measure mechanical parameters with high spatial or/and temporal resolution
and especially from the necessity to interpret the results by analysing usually un-
steady and at least two-dimensional flows theoretically. At present, one of the most
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reliable is the oscillating jet method originally proposed by Bohr (1909) for the
determination of the equilibrium surface tension of a newly formed water-air in-
terface. In this method, a jet of liquid coming out of an elliptic orifice produces
a wave pattern which can be analysed to calculate the surface tension. Interesting
results have been reported by Rusanov and co-workers (Kochurova, Shvechenkov &
Rusanov 1974; Kochurova & Rusanov 1981a, b, 1995), who used the oscillating jet
method to determine the dynamic surface tension of water. The authors had im-
proved the method by taking into account the non-uniform velocity profile across
the jet (Kochurova, Noskov & Rusanov 1974b)†, which, as shown by Bohr (1910),
can lead to a variation in the observed wavelength on the free surface thus af-
fecting the result. It has been found that for water τ ∼ 10−4–10−3 s (Kochurova
et al. 1974a; Kochurova & Rusanov 1981a, b, 1995). By approximating the data
with the relaxation equation, one obtains τ ≈ 6 × 10−4 s (Kochurova & Rusanov
1981a). This surprisingly big value, however, is in agreement with early measurements
by other authors (see in Kochurova & Rusanov 1981a, figure 1) and coincides in
order of magnitude with the relaxation time of the surface potential (Kochurova
& Rusanov 1981a, figure 3) so that a serious experimental error seems unlikely. It
should be pointed out also that in non-polar liquids the relaxation time is much
shorter and no systematic deviation of the surface tension from its equilibrium
value has been detected in the submillisecond range (Kochurova & Rusanov 1981b).

4.2. Relaxation mechanism

The macroscopic surface-tension-relaxation time expected in the cusp phenomenon
and measured in experiments poses a question about the corresponding relaxation
mechanism. The straightforward way of attacking this problem would be to consider
the structure of the interfacial layer and the process of its formation explicitly, and
then to find the corresponding macroscopic parameters by averaging the microscopic
ones across this layer. The fundamental difficulty of this way is associated with a
very small thickness of the interfacial layer. As is known, constitutive equations for
micromechanical systems may be not the same as for macroscopic ones. Besides this,
one would face the problem of representing intermolecular forces macroscopically as
forces between ‘material particles’ or, if a non-continuum approach is used, has to deal
with well-known fundamental difficulties of the kinetic theory of fluids. Anisotropy of
the system will also contribute to the difficulties. (For example, one may expect elastic
behaviour of the interfacial layer in the normal direction combined with viscous
behaviour along it.)

The present model was derived (Shikhmurzaev 1993a, b) using a ‘structureless’
approach (Bedeaux, Albano & Mazur 1976), where from the very beginning the
interfacial layer is represented as an already averaged and therefore two-dimensional
‘surface phase’ with its specific ‘surface’ properties. Now the problem is to determine
fluxes of mass, momentum and energy between the bulk and the surface phases
and to formulate the constitutive equations. This problem was resolved by methods
of irreversible thermodynamics, thus implying mechanisms of mass, momentum and
energy exchange associated with diffusion expressed in its most general form in terms
of thermodynamic ‘forces’ and ‘fluxes’. This can also be interpreted as a ‘chemical
reaction’ of adsorption/desorption of molecules to/from the ‘surface phase’.

† This correction undermines an early result by Vandegrift (1967) – see Kochurova & Rusanov
(1981b).
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The relaxation time is given by (Shikhmurzaev 1993a)

τ =
1

kρ(dµs/dρs)(ρ
s
1e)
, (4.2)

where kρ is the Onsager coefficient associated with the mass transfer between the bulk
and the surface phase, µs is the chemical potential of the surface phase. An important
feature of the ‘structureless’ approach is that it does not imply that the interfacial
structure can be described in the frame of continuum mechanics in a closed form, i.e.
without involving intermolecular interactions.

It should be noted that a diffusion mechanism of the interface formation and the
possibility of elastic behaviour of the interfacial layer are not incompatible since they
refer to kinematic and dynamic properties, respectively.

It is worth mentioning that a mechanism of relaxation similar to the one used
in the present model would also follow from consideration of the structure of the
interfacial layer (see, for example, Brenner 1979), though, of course, the assumptions
made for this ‘structural’ way are neither weaker nor more evident than those used
in the ‘structureless’ approach.

4.3. On the surface density

To formulate an equation of state for the ‘surface’ phase, one has to choose parameters
which will characterize a current state of the interface. In the simplest variant of the
present model, a current state of an interface in isothermal (or, more generally, ‘surface
barotropic’) processes is characterized by one parameter, i.e. the surface density ρs.
This parameter was used in different forms in a number of works (for example, Kovac
1977; Albano, Bedeaux & Vlieger 1979; Napolitano 1979; Ronis & Oppenheim 1983;
dell’Isola & Kosiński 1993. See also Defay, Prigogine & Sanfeld 1977 for a review of
earlier works and Gibbs 1928, p. 224 as the starting point).

The physical meaning of ρs is quite clear. Indeed, molecules in the interfacial layer
experience non-symmetrical action from intermolecular forces of the ‘bulk’ molecules,
which is the physical reason for the surface tension and leads to a non-trivial structure
of the interface. In particular, the distribution of the actual density in the interfacial
layer does not change abruptly as we cross the layer. In macroscopic fluid mechanics,
when a diffuse interface is replaced by a geometrical surface of zero thickness, the
actual density ρ averaged across the interfacial layer gives a ‘surface’ density ρs. In
equilibrium, this parameter has a certain equilibrium value ρs1e determined by the
structure of intermolecular forces from the bulk phases, which are responsible for
the surface tension. If two free surfaces are brought in contact so that the interface
disappears, the ‘surface’ density, which is now simply the averaged density of the
same layer in a symmetrical field of intermolecular forces, will change to the value
ρs0 corresponding to zero surface tension. Thus, ρs may be used as a macroscopic
characteristic of a current state of the interface. Evidently the surface tension is a
function of the ‘excess’ surface density, i.e. the difference ρs−ρs0. In this paper, we use
the simplest linear surface equation of state (2.4), which reflects only the tendency of
the surface-tension variation with the surface density. A method of determining the
actual surface equation of state from experiments is described in Shikhmurzaev (1996).

4.4. Cusping

Let us consider the physical picture of cusping as it is given by existing mathematical
models. The solution to the problem found in the framework of classical fluid
mechanics (Jeong & Moffatt 1992) is mathematically self-consistent and has no
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internal limitations. It can be obtained also as the result of the corresponding
transient flow (Pozrikidis 1997).

However, as was pointed out in §1, a limitation comes from outside and is associated
with a physical parameter – the thickness of the interfacial layer h – neglected in
the classical hydrodynamics. Indeed, as the radius of curvature of the free surface R
becomes comparable with h, the classical model falls outside its limits of applicability
since the interface can no longer be modelled as a geometrical surface with a constant
surface tension along it. Physically, R ∼ h corresponds to the beginning of transition
from a flow regime with a stagnation line on a (rounded) free surface to that
with a cusp, where (macroscopically) no stagnation line is present. In a continuum-
mechanical modelling, the genuine cusp means that macroscopically a concentrated
capillary force is acting on the cusp line, and hence it must be balanced by another
concentrated force of a non-hydrodynamic origin, which is borne and maintained
by the outer flow. Experiments suggest that this is the force from the surface-
tension-relaxation ‘tail’, and the present paper provides a mathematical description
of its mechanical properties when it is long compared with h. If the critical velocity
Uc satisfies inequality (4.1), then the present model is applicable from the start of
formation of the cusp, otherwise it will be applicable for higher flow rates (a fully
developed cusp), when the length of this ‘tail’ becomes long enough. In an intermediate
regime when h ∼ Uτ, one has to consider the structure of the (‘short’) relaxation tail
and the free surfaces in the vicinity of the cusp in more detail taking into account
their finite thickness. From the macroscopic point of view, the dimensions of such a
tail may be neglected, and its presence will manifest itself as a concentrated (non-
hydrodynamic) force acting on the free surface and balancing that from the surface
tension of contacting free surfaces.

Pictorially, we may say that the process of cusp formation starts when R becomes
comparable with h, and the external flow becomes able to ‘sweep’ the liquid-facing
side of the interfacial layer into the interior. As the flow rate increases so does the
proportion of the interfacial layer swept into the bulk. Finally the whole interfacial
layer is swept into the interior of the fluid, so that the stagnation line on the
free surface disappears, and the liquid particles moved from the interface into the
bulk form the surface-tension-relaxation ‘tail’. This situation corresponds to a fully
developed cusp, which, according to the ‘kinematic definition’ of cusping, is associated
with a qualitative change in the flow kinematics.

In other words, on the macroscopic length scale the cusp formation is a transition
from a regime where the Laplacian capillary pressure due to a rounded free surface
is balanced by the bulk stress to a regime where the concentrated capillary force is
balanced by that from the surface-tension-relaxation tail.

4.5. Intermolecular forces

It is necessary to make a special remark concerning intermolecular forces and their
place in the present model. As is clear from the physical picture described above, in
the intermediate regime corresponding to the transition from a rounded interface to
that with a fully developed cusp, the interfaces cannot be regarded as geometrical
surfaces, and their diffuse nature must be taken into account. Thus, this regime is the
subject of microhydrodynamics, which includes intermolecular forces explicitly and
considers the interfacial layers as the ‘bulk’.

The regime of a fully developed cusp, where (4.1) is satisfied, can again be de-
scribed macroscopically with neglect of h. In the present model, intermolecular forces
manifest themselves implicitly through the transport coefficient, relaxation times and
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parameters of the constitutive equations, as they always do in macroscopic fluid
mechanics.

A simplifying assumption was made about the change of the equilibrium surface
parameters, which is assumed to occur in the cusp region (see figure 2 and (2.7)).
Although this simplification prescribes an abrupt change in ρse, the resulting distribu-
tion of the surface parameters is continuous and the change in the surface pressure
is smooth. One may develop the present (macroscopic) approach further by using a
smooth function ρse instead of (2.7) and/or generalizing the model itself, say, along
the lines discussed in Shikhmurzaev (1994). This programme, which seems rather
straightforward but may require some additional and very non-trivial assumptions,
remains beyond the scope of the present paper.

If we take a closer look at the cusp region, a contribution from intermolecular
forces may also appear as an additional bulk force acting between interfaces in the
vicinity of the cusp. This force may become an additional factor influencing the
free-surface shape near the cusp, but it cannot be responsible for the existence of the
cusp itself. Indeed, the first reason for this is that according to experiments the cusp is
borne and maintained by external hydrodynamical flow, while this force is essentially
non-hydrodynamic in origin and would be present even if the external flow were
absent. Then one should have a cusp in a liquid at rest where the free surfaces are
‘sealed’ together by intermolecular forces. However, experiments show that in these
conditions the cusp disappears. The second reason is that this force will be normal to
the interfaces, while the capillary force acting on the cusp is tangential to them and
should be balanced by another force directed along the contacting free surfaces.

Finally we will illustrate the role of intermolecular forces and the hydrodynamic
aspect of the problem qualitatively with the help of integral considerations. Let us
look at a control volume ABCD (figure 1), which comprises the cusp and has sides
AB and CD lying just outside the range of influence of intermolecular forces while
AD and BC are at a finite distance from the cusp, so that all the boundaries are
located in the bulk where only the physical mechanisms incorporated in the classical
hydrodynamics are important. In this case, the intermolecular forces, being internal
with respect to volume ABCD, cannot balance those from the surface tension acting
on AD. The latter can be compensated by the normal stress applied to BC or/and by
the tangential stress acting on AB and CD. The classical boundary conditions on the
free surface and along the plane of symmetry in the bulk imply zero tangential stress so
that the tangential forces on AB and CD are negligible, and the only possibility is that
the capillary forces are balanced by the normal stress imposed on BC. If one neglects
the length scale associated with intermolecular forces compared to the characteristic
length scale of the flow (the hydrodynamic limit), then the capillary forces (the surface
tension) acting on AD remain finite while the size of BC becomes infinitesimal and,
for the total force acting on BC to remain finite, the normal stress distribution should
have a non-integrable singularity. Hence one arrives at Richardson’s solution (1.1),
which assumes a genuine cusp at finite capillary numbers and therefore has to produce
a finite total force as a result of the action of viscous stress on a line. On the other
hand, the present model gives the mechanism of generating tangential stress (3.9)
along AB and CD, which still have a finite length in the hydrodynamic limit, and
hence allows for balancing the capillary forces without giving rise to singularities.

4.6. Gas viscosity

In the present study, the displaced fluid, a gas, is assumed to be inviscid and therefore
dynamically passive. In the literature, one can find two mutually contradictory points
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of view on how the displaced fluid viscosity affects the evolution of the free-surface
associated with a convergent flow.

Koplik & Banavar (1994) have considered the situation of two immiscible fluids of
equal viscosity driven by counter-rotating solid rollers on a microscopic length scale
in the framework of molecular dynamics simulations. They found that the curvature
of the separating interface increases with rotation rate but ‘high curvature interfaces
do not reach a steady state’: instead ‘drops of the fluid above the free surface are
detached’ so that ‘in no case does a true cusp form’. This is in qualitative agreement
with experiments by Joseph et al. (1991), where for two liquids no cusps were detected.

Pozrikidis (1997) has considered the same system numerically in the framework of
the conventional fluid mechanical model and found that ‘a cusp that is even sharper
than the one developing on a free surface is seen to form’. The author attributes Koplik
& Banavar’s result to instability of the flow around the cusp on the grounds that
similar droplets to those obtained by Koplik & Banavar appear in the conventional
fluid mechanical treatment of the evolution of a two-dimensional bubble placed at
the centre of the 4-roller Taylor’s mill. It should be noted, however, that in the
conventional fluid-mechanical formulation one may speak only about the tendency
in the free-surface evolution but not about the cusp itself since the model is not
applicable (and the computational method breaks down) as the radius of curvature
of the free surface becomes sufficiently small.

As is known from experiments, the cusps do exist, and at the same time the
gas viscosity is, of course, non-zero. Let us look at how these two facts meet in
a mathematical model. If one assumes that (a) a genuine cusp does exist on a
macroscopic length scale, (b) the viscous fluid model is valid for the displaced gas up
to the cusp point and (c) the difficulties associated with application of the conventional
model to the liquid are resolved (say, by the generalization of the model used in the
present paper), then it becomes evident that these assumptions are incompatible.
Indeed, since the gas experiences tangential forces from the liquid on the free surfaces
directed towards the cusp, pressure in the gas should increase as the cusp is being
approached to be able to push the gas from the cusp along the plane of symmetry
thus maintaining the steady flow. At the same time, the shape of the free surface
implies that, because of the Laplacian pressure, the gas pressure at the cusp is at least
not higher than that in the liquid. Thus we arrive at the contradiction, and hence a
steady cusp cannot exist.

A possible qualitative explanation for this apparent paradox is as follows. If one
has a genuine cusp, then the gap between the free surfaces goes to zero faster than
the distance from the point, where the gap is measured, to the cusp: this is actually a
geometrical definition of the cusp. Therefore the average intermolecular distance in the
gas phase becomes comparable with the gap size long before the cusp is reached. This
means that Knudsen’s effects become important at a finite distance from the cusp, and
the conventional model should be abandoned. In macroscopic terms, this implies that
the gas viscosity, as it is felt by the liquid, goes to zero as the cusp is being approached,
and the asymptotics obtained in the present paper can be used to describe a real
gas–liquid system. In the case of two liquids, continuum-mechanics models would
break down simultaneously for both phases, the arguments mentioned above become
inapplicable, and one has the situation described by Koplik & Banavar (1994).

4.7. Possible experiments

Experimental investigation of the processes associated with the cusp formation and
development, which could directly confirm or invalidate the present theory, is a difficult
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and challenging problem. One route is to study the physics at the basis of the theory
and look into the fine structure of the surface-tension-relaxation ‘tail’. The existence
of such a tail implies that after the fluid particles belonging to the free surface traverse
the cusp, they still have the properties of those on the free surface which might be
detected. Another measurable local characteristic is the fluid velocity profile near
the cusp, which, according to the theory, should have a component corresponding
to the shear flow (3.9). The difficulty is that, because the relaxation time τ is very
small, especially for non-polar liquids, and hence the relaxation tail is very short, the
measurements of local characteristics will require a very high spatial resolution.

An indirect method of testing the theory is to compare a global solution obtained in
the framework of the present theory (for which §3 will provide the local asymptotics)
and that found in the framework of the conventional model, for which the local
asymptotics could be extracted from Jeong & Moffatt’s result, with experimental
data. In particular, one might expect that since the cusp ‘resistance’ to the outer flow
is associated with different mechanisms in the two models (the surface tension gradient
and the Laplacian pressure, respectively), the free-surface shape and especially the
cusp position as a function of the flow rate will be informative and could indicate the
dominant physical process.

Experiments with free-surface cusps are also interesting from another point of view.
If the cusp phenomenon is viewed as a particular case of the interface formation–
disappearance process, then, used as a method of measuring the characteristics of
such processes, this flow has several advantages over those considered in traditional
techniques. Indeed, in a flow with the cusp, (i) liquid–solid and gas–solid interfaces
do not affect the region of interest, (ii) the process is steady, and (iii) the flow
conditions can be well-defined. Besides that, one could extract information from
the behaviour of different parameters simultaneously to be able to cross-check the
results. In particular, the distribution of the surface parameters along the relaxation
‘tail’ could give information about the surface-tension-relaxation time τ, and the
conditions for the onset of cusping could be used to investigate the fine structure of
interfaces.

5. Summary
The paper suggests a physical mechanism which allows for the existence of genuine

cusps on a free surface. The mechanism is associated with the surface-tension-
relaxation process occurring as the fluid particles belonging to the free surface are
swept into the interior of the fluid. It explains the origin of a non-hydrodynamic
concentrated force which balances that from the surface tension of the free surface
thus making possible a regular flow field in the vicinity of the cusp. In the case of a
long surface-tension-relaxation tail, a local asymptotical analysis of the distribution
of surface parameters near the cusp is presented.
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